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Abstract

This paper delineates the protocol of the AO com-
puter, a decentralized computing system inspired by
the actor-oriented paradigm. It establishes a single
system image capable of supporting numerous parallel
processes without the constraints typical of current de-
centralized computation models, emphasizing network
verifiability and minimized trust requirements. The
architecture of AO is extremely modular, facilitat-
ing seamless integration with existing smart contract
platforms and allowing customization across compu-
tational resources, virtual machines, security mechan-
ics, and payment mechanisms. Key functionalities in-
clude unrestricted resource utilization for hosted pro-
cesses, direct integration with Arweave’s data storage
capabilities, autonomous activation of contracts, and a
comprehensive message-passing layer for inter-process
coordination. This protocol focuses on providing a
terse overview of the computer’s mechanics, in order
to accompany its formal protocol specification.

1 Introduction

The AO computer is the actor oriented[13] machine that
emerges from the network of nodes that adhere to its core
data protocol, running on the Arweave[8] network. This
document gives a brief introduction to the protocol and
its functionality, as well as its technical details, such that
builders can create new implementations and services that
integrate with it.

The AO computer is a single, unified computing environ-
ment, a Single System Image[14], hosted on a heterogeneous
set of nodes in a distributed network. AO is designed to
offer an environment in which an arbitrary number of paral-
lel processes can be resident, coordinating through an open
message passing layer. This message passing standard con-
nects the machine’s independently operating processes to-
gether into a ’web’ – in the same way that websites operate
on independent servers but are conjoined into a cohesive,
unified experience via hyperlinks.

Unlike existing decentralized compute systems, AO is ca-
pable of supporting the operation of computation without

Figure 1: The AO computer architecture takes a modular
approach to its construction: Each logical responsibility is
split into an appropriate subnet, the participants of which
each engage in a peer-to-peer market for the provision of

their services.

protocol-enforced limitations on size and form, while also
maintaining the verifiability (and thus, trust minimization)
of the network itself. Further, AO’s distributed and mod-
ular architecture allows existing smart contract platforms
to easily ’plug in’ to the network, acting as a single pro-
cess which can send and receive messages from any other
process.

Instead of enforcing one set of choices upon all users
of the computing environment, AO is built in a modular
form: Allowing users to choose which virtual machines, se-
quencing models, message passing security guarantees, and
payment options work best for them. This modular envi-
ronment is then unified by the eventual settlement of all
messages – each sharing the same format – onto Arweave’s
decentralized data layer. This modularity creates a unified
computing environment suiting an extremely wide set of
workloads, in which every process can easily transfer mes-
sages and cooperate.

AO’s core objective is to enable trustless and cooperat-
ing compute services without any practical bounds on scale.
This allows for a radically new design space of applications
that were not previously possible: Blending the benefits
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Figure 2: The inter-node communication flow while processing a typical request from a user (in this a transfer). Red
lines indicate the path of information between nodes as a result of the originating message, while the magenta and blue

lines follow the path of subsequent messages. Green lines trace an example distribution of the content of these
messages – ensuring their long-term data availability – between nodes on the Arweave network.

of smart contract applications (services without requiring
trust in anything but code), and traditional compute envi-
ronments (Amazon EC2, etc.).

2 Core Functionality

aos—a decentralized operating system for AO—allows de-
velopers to launch command-line processes that function
like smart contracts within its decentralized network. This
process is similar to starting a server on a cloud service, but
with decentralization and trustless computation as key ad-
vantages. These processes operate without being confined
to any particular location, enabling seamless user interac-
tions across the network. The outcome is a ‘Single System
Image’—a unified, global computing platform that tran-
scends physical and scalability limits, collectively used by
all participants. Essentially, AO forms a vast, scalable com-
puter where users can interact with any process, promoting
a highly collaborative ecosystem.

For users, AO represents a shared computer on which
they can execute multiple processes. These processes are
not confined to any particular servers or under the do-
minion of any single individual or group. Once activated,
these processes deliver their services with cryptographic se-
curity, ensuring unbiased and perpetual operation. This
design empowers users with the ability to rely on services
that maintain their rights consistently over time, fostering
a trustable environment for interaction with the system.

When compared to existing decentralized and distributed
computation systems, the AO protocol offers a number of
novel mechanisms and features. In this section we will run
through some of the core benefits it provides in turn.

2.1 Arbitrary numbers of processes (’con-
tracts’) running in parallel

In AO, applications are built of any number of communi-
cating processes. Inspired by the original actor model[19]
and Erlang[16], AO does not allow processes to share mem-
ory between one another, but does allow them to coordi-
nate via a native message-passing standard. Each of these
processes can then be operated at the full speed of the com-
puting resources that are available, without interfering with
one another. By focusing on message-passing AO enables
scaling mechanics that are far more similar to traditional
web2/distributed systems environments, than traditional
smart contracts.

2.2 Unbounded resource utilization in pro-
cesses

Building on the lazily-evaluated architecture of the original
versions of SmartWeave[25] and LazyLedger[5] later known
as Celestia[11], nodes in the AO network do not need to
perform any compute at all in order to reach consensus
about program state transitions. State is implied ’holo-
graphically’ by the Arweave-hosted log of messages to the
process. Compute costs are then delegated to users who
can either calculate their own states, or request execution
by nodes of their choosing.

2.3 Access Arweave, a native unbounded
hard drive

AO processes can seamlessly load and execute data of any
size directly into their memory and write back to the net-
work. This setup eliminates the typical resource constraints
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and enables fully parallel execution, dramatically expand-
ing the possibilities for application development beyond
the limits of traditional smart contract platforms. Con-
sequently, it opens the door to sophisticated applications
requiring extensive data handling and computational re-
sources, such as machine learning tasks and high-compute
autonomous agents.

2.4 Autonomously activating contracts

In traditional smart contract environments (like Ethereum,
Solana, Polygon, etc.), contracts ’wake up’ to perform com-
pute at the request of a user transaction. This creates an
environment in which programs are not ’live’ unless a user
interacts with them, lessening the scope of applications that
can be built on top. AO removes this limitation by allowing
contracts to have scheduled ’cron’ interactions that auto-
matically wake them up and execute compute at set inter-
vals. Any user, or indeed the process itself, can pay a node
to ’subscribe’ to a process in order to trigger the evaluation
of the compute at the appropriate frequency.

2.5 Modular architecture supporting ex-
tensions

AO’s core architecture is an open data protocol that any-
one can build an implementation of. Everything – the se-
quencers, message passing relayers, and even the virtual
machine of the system—can be swapped out and extended
at will. This flexibility will allow the existing smart con-
tracting systems in the Arweave ecosystem (Warp, Ever,
Mem, et al) to plug into AO and be able to send and re-
ceive messages from the unified network. This will also
allow all of these smart contracting systems to share some
of the same infrastructure and tooling, making for a more
coherent experience of compute on Arweave.

3 Architecture Overview

Now that we have established the purpose and features of
the AO computer network, we will consider the core com-
ponents of its construction. The fundamental elements of
AO are as follows:

3.1 Processes

Processes are the network’s unit of computation. Processes
are represented by a log of interacting messages stored
on Arweave, as well as an initialization data item. Pro-
cesses define their required computing environment (its
VM, scheduler, memory requires, and necessary extensions)
in their initialization. While processes are represented at
the consensus level in this way, they also imply a state which
can be calculated by computing units that satisfy the re-
quirements and choose to execute the process. As well as
receiving messages from user wallets, processes are also for-
warded messages from other processes via messenger units.
The developers of processes are given free choice as to how

Figure 3: Nodes from applicable subnets cooperate in the
AO computer protocol in order to fulfil user interactions.
Each member of the respective subnets competes in a
scale-free marketplace with other nodes to offer highest

quality of service (including minimized fees and latencies)
for end users.

to determine the trustworthiness of these messages, as de-
scribed in the below sections.

3.2 Messages

Every interaction with a process in AO is represented by
a message. At their core, messages are ANS-104[6] com-
pliant data items. Users and processes (via their outboxes
and messenger units) can send messages to other processes
on the network by way of scheduler units. Messages in
AO have semantics between that of UDP[20] and TCP[21]
packets: Delivery is guaranteed to occur only once, but if
the message is never forwarded by a messenger unit—or the
recipient never actually processes it—then its delivery will
not occur.

3.3 Scheduler Units (SUs)

Scheduler Units are responsible for the single assignment of
atomically incrementing slot numberings to the messages
that are sent to a process. After assignment, schedulers are
required to ensure that data is uploaded to Arweave and
thus made permanently available for others to access. Pro-
cesses have free choice of their preferred sequencer, which
can be implemented in a variety of ways: Decentralized,
centralized, or even user-hosted.

3.4 Compute Units (CUs)

Compute Units are nodes that users and messenger units
can use in order to calculate the state of processes in AO.
While SUs are obligated to sequence the messages of pro-
cesses they have accepted, no CU is required to calculate
the state of a process. This gives rise to a peer-to-peer mar-
ket for computation, where CUs offer the service of resolv-
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ing process state in competition with one another—trading
off price, the computation requirements of the process, and
other parameters. Once computation of a state is com-
pleted, the CU will return to the caller a signed attestation
of the output (logs, outboxes, and requests to spawn other
processes) of the resolution of a specific message. CUs may
also generate and publish signed state attestations that
other nodes can load—optionally for a UDL[17] specified
fee.

3.5 Messenger Units (MUs)

Messenger Units are nodes that relay messages around the
AO network according to a process called pushing. In
essence, when MUs push a message around the system they
send it to the appropriate SU for a process, then coordinate
with a CU in order to calculate the output of the interac-
tion, and then repeat the process recursively for any result-
ing outbox messages. This process continues until there are
no more messages to push. Users and processes can also pay
a MU to subscribe to a process, pushing any messages that
result from its timed cron interactions. Processes can also
optionally label a message as a cast—leading the MU to
send the message to its SU, but not listen for a response. In
this way, AO is able to provide a vibrant environment that
gives users and processes maximal choice—VM, payment
method, scheduler type, messaging security, and more—
without requiring consensus on costly computation itself.

4 Related Work

There are no direct analogies to draw upon that describe
what AO is and the experience of using it. There are, how-
ever, many adjacent projects and networks that can be used
to contrast with AO in order to elucidate its properties. In
this section we discuss each in turn.

4.1 The Actor Model

The Actor Model, introduced by Carl Hewitt, Peter Bishop,
and Richard Steiger in their paper, A Universal Modular
Actor Formalism for Artificial Intelligence[19], serves as a
foundational framework for understanding and implement-
ing concurrency in computer systems. This model posits
that the fundamental unit of computation is the “actor,”
an entity that can make local decisions, create more actors,
send messages, and determine how to respond to messages
it receives. This approach to system design and program-
ming facilitates the creation of distributed, highly concur-
rent, and scalable applications.

4.2 Erlang

AO is largely inspired by the Erlang computing environ-
ment and its programming language. Erlang is an im-
plementation of the actor model which offers extremely
lightweight processes, handled by schedulers in the run-
time, in order to enable efficient utilization of massively

parallel systems (machines and networks with many phys-
ical threads). These capabilities give rise to a ’process-
oriented’ form of programming, in which the developer nat-
urally splits their computation into many cooperating and
parallel components in order to achieve their goal. While
Erlang is not extremely well known amongst mainstream
computing circles, it is used in a significant number of envi-
ronments where high performance is a necessity: Telephony
switches[16], instant messaging services like WhatsApp[15],
etc.

The AO computer derives its process-oriented approach
from Erlang directly. Erlang offers clue evidence that an
environment in which distributed computation is achieved
through processes that pass messages but do not share
memory can be highly efficient. AO applies this approach
to the domain of smart contracts, while also offering a single
system image for an Erlang-like environment for the first
time.

4.3 Smart Contracting Platforms (Ex.
Ethereum)

Ethereum is a decentralized computing network in which all
users share memory and a single thread of execution. Orig-
inally based on an idea of adding Turing Complete compu-
tation to a blockchain[2], Ethereum morphed into a project
to build a ’world computer’[18]. Upon launch, Ethereum
was able to demonstrate the power of trustless computa-
tion of arbitrary code – without the production of an inde-
pendent blockchain network – for the first time. While the
network gained immense traction with users and develop-
ers, the core network’s throughput has not improved since
it launched in 2015.

Instead of attempting to scale the base network past the
processing capacity of a single, small thread of execution,
the Ethereum ecosystem has pivoted to a ’rollup-centric’
roadmap[1]. This approach to scaling focuses on support-
ing additional ’rollup’ networks that inherit some[24] of the
properties of Ethereum, but not all of them. At the time
of writing, there are 14 rollups in the Ethereum ecosystem
with more than $100 million of total value represented in
their programs. Each of these 14 rollups represents another
single thread (a ’process’ in AO terms) of computation that
can be performed in parallel. By building from the ground-
up to focus on parallel execution rather than shared mem-
ory, AO offers a completely novel architecture that supports
an arbitrary number of independent processes, while main-
taining the ability for programs to be decentralized and
trustless.

4.4 Decentralized Compute Marketplaces

In traditional smart contract platforms such as Ethereum,
a shared-thread architecture restricts each user to only exe-
cuting small computational tasks. This inherent limitation
constrains both the complexity and scalability of opera-
tions on the network, thereby impeding the potential for
more computationally intensive smart contracts.
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4.4.1 Decentralized Large-Scale Computing Net-
works

Several networks, such as Akash[4], aim to facilitate large-
scale computing in a decentralized context. Unlike plat-
forms that prioritize verifiable and reproducible computa-
tions, Akash and similar networks provide a decentralized
marketplace for container hosting services. This model sup-
ports the execution of traditional, non-deterministic pro-
grams on x86 architecture physical machines, though it
compromises the ability to create trustless services char-
acteristic of smart contracts.

4.4.2 Advancements in Virtual Machine Technolo-
gies

AO allows developers to choose their preferred Virtual Ma-
chine (VM), with the initial reference implementation fo-
cusing on WebAssembly (WASM). WASM containers in
AO can manage up to 4 GB of memory—a limit expected
to increase with the adoption of WASM64, thereby en-
abling prolonged duration computations. The rich com-
pilation tools within the WASM ecosystem support a di-
verse range of programs, exemplified by recent uses in exe-
cuting LLM transformer models[10], speech recognition[9],
and compute-heavy image manipulation software like Pho-
toshop[3] in web browsers.

4.4.3 Holographic State Mechanism in AO

Despite its substantial computational capacities, AO main-
tains traditional smart contract execution capabilities due
to its holographic state mechanism. Rather than achieving
consensus on the state of the computation itself, AO en-
sures that logs of interactions are recorded and accessible
on Arweave. This setup projects a ‘hologram‘ of the state,
meaning that while the state may not have been computed
by any participant yet, it is guaranteed to always produce
the same outputs when computed. Furthermore, the holo-
graphic state system, powered by message logs on Arweave,
allows AO processes to react to implied messages on a timed
basis, thereby facilitating proactive actions.

Coupled with its holographic state mechanism, AO also
offers a distributed network of Compute Units that provide
cryptographically signed attestations about the results of
computations. These compute nodes engage in a compet-
itive market, which serves to reduce the costs associated
with resolving the holographic state, thereby enhancing ef-
ficiency for users.

4.5 Peer-to-Peer VM hosting

Urbit[26] is a peer-to-peer computation system with some
similarities to AO. By focusing on the transfer and avail-
ability of interaction logs, Urbit offers a distributed com-
pute environment where ’servers’ can be ported from one
physical host to another. During the transition, the log
of interactions with the hosted computation can be exe-
cuted to recalculate the current state. Additionally, Urbit

processes can send messages to each other to facilitate com-
munication.

Unlike AO, Urbit does not achieve decentralized consen-
sus on its interaction logs. Practically, this means there
is no canonical agreement or guaranteed availability of its
‘rollups’ — consequently, the state of its processes remains
uncertain. In this respect, Urbit shares characteristics with
Akash and other decentralized compute marketplaces but
also allows for the verifiable migration of computation from
one host to another, if the host is agreeable to the transi-
tion. AO advances this model by ensuring that logs of mes-
sages to a process are accessible via Scheduler Units (SUs),
which upload them to Arweave. This enforcement of log
availability decentralizes user processes—no longer confined
to a single computation node—allowing their state to be re-
solved by a distributed network of Compute Units (CUs) in
real-time. This architectural difference provides AO with
the necessary attributes for deploying trustless smart con-
tracts and supporting a vast number of processes. This
capability is further enhanced by the fact that processes
can be holographically represented; their message logs are
permanently accessible, even without any CUs currently
attached to execute them.

4.6 Internet Computer Protocol

The Internet Computer Protocol (ICP) shares some objec-
tives with AO, such as creating a decentralized verifiable
computation environment. However, the mechanisms and
architectural choices within ICP diverge significantly from
those of AO, leading to different operational paradigms and
potential limitations.

ICP employs a single Byzantine Fault Tolerant (BFT)
mechanism across its ’subnets’, a design choice that man-
dates consensus on the results of computations. This ne-
cessitates that every node within a subnet execute every
step of each computation, inherently limiting the amount
of computation that can be feasibly performed due to scal-
ability constraints. Furthermore, ICP adopts a monolithic
protocol structure, enforcing uniform consensus and execu-
tion parameters across all resident containers.

By contrast, AO employs a modular approach, where
different network responsibilities are segmented into sub-
components with flexible parameters. This design philoso-
phy extends, for example, to allowing processes within AO
to choose their virtual machines and security parameters
— defining an environment tailored to their specific needs
rather than conforming to a one-size-fits-all model.

Additionally, AO’s core design focuses on achieving con-
sensus around the inputs to processes, rather than exclu-
sively on the outputs. This approach permits processes
in AO to operate for any desired length of time, enhanc-
ing the system’s adaptability and application scope. More-
over, AO’s governance is minimized, resembling Bitcoin’s
model, where the network operates in a truly permission-
less manner without the intervention of any controlling or-
ganization. In contrast, ICP employs a governance-heavy
approach where a DAO can revoke participation rights and
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has the authority to de-platform any container it deems nec-
essary. This centralized control is akin to a public-company
operated by its shareholders, potentially leading to discrim-
inatory practices against certain protocol uses.

Furthermore, ICP’s security model is based on node op-
erators undergoing ‘KYC’ processes with the DAO, lacking
protocol-enforced economic incentives that guarantee exe-
cution fidelity. This contrasts with AO’s economic model,
which is designed to foster a competitive, open market that
naturally aligns node behavior with network health through
economic incentives.

5 Network Security

The AO protocol adopts a modular approach to its tech-
nical architecture, imposing minimal specific requirements
on its resident processes. This principle extends to AO’s
security mechanisms as well. The core components of the
network—its data protocol, sub-unit role division, and in-
tegration with Arweave—offer a framework for building se-
cure computations without mandating a single approach
for all resident applications. This flexibility enables the
network to adapt to a wide variety of use cases, supporting
its mission to provide a universal protocol for decentralized
computation. In this section, we explore the construction
of AO’s modular network security architecture, the formal
process model that underpins it, and two exemplar security
processes that will be available in the live network: ”AO-
Sec Origin’ and SIV. Afterwards, we will present the eco-
nomic fundamentals that set the base for a market around
this security model.

5.1 General Overview of the Security
Model

In addition to allowing varied security mechanisms to be
layered on top of its data protocol and data replication
system (Arweave), AO supports the stacking of security
processes on top of one another, enabling users to freely
combine their benefits and trade-offs. Two such mecha-
nisms are: ’AO-Sec Origin’, which provides rehypothecat-
able collateralized message passing, and SIV, a mechanism
for incentivizing Sybil-resistant attestation sets for network
actions (see sections 5.6 and 5.7 respectively). While these
systems can be used independently, stacking them together
yields both Sybil-resistant and collateralized message trans-
mission. To further showcase how modular security en-
hance the network, we now describe how security can be
passed along processes by means of staking economic value.

5.1.1 Hierarchical Security

Processes in AO operate independently with deterministic
verifiability of their individual states. As previously de-
scribed, processes coordinate through a system of message
passing, relayed by Messaging Units (MUs). Each of these
relayed messages comes with a cryptographically verifiable

signature produced by the MU. Each process has the au-
tonomy to decide how to respond to messages from different
signers, allowing them to choose their own security model
based on their needs. This setup enables various security
mechanisms with different trade-offs (like latency, cost, and
efficiency). Further, each process’s state transitions can
be calculated independently, without relying on messages
from other processes, allowing the network to scale without
needing to fully verify all processes for any single message
validation.

Security mechanisms in the AO network are based on a
universal principle: Attestations on the outcomes of mes-
sage interactions with processes should be cryptographi-
cally validated and economically secured. The AO data
protocol provides cryptographic validation, while the AO-
Sec Origin security process ensures economic security. To
achieve this, the AO-Sec process allows any network par-
ticipant to:

• ‘Stake’ a token representation of economic value in the
process itself. While staked, this collateral may be
subjected to votes that may lead to its ‘slashing’ –
removal from the ownership of the ‘staker’ – upon the
agreement of other stakers.

• Deposit economic value into a ‘sub-staking’ process,
granting it authority over the funds, allowing it to
slash or return them according to its own rules. self-
administered rules.

AS an additional feature, The AO-Sec Origin process also
offers ‘back-stop’ liveness and Scheduler Unit (SU) failure
recovery mechanisms, detailed in section 5.6.1.

5.1.2 Economic Security

The AO network requires a native token to support all
safety mechanisms, implementing economic security for
processes that rely on the protocol. As a consequence, the
AO token is introduced into the system to underpin the
network’s ’AO-Sec Origin’ security process. It serves as a
liquid and common unit of value for additional economic
mechanisms layered above it, as described in the section
above. In order to achieve this in the most neutral way
possible, the token’s launch mechanics have been designed
to closely resemble Bitcoin’s monetary policy and have been
optimized to effectively bootstrap the network’s economic
security layer. Thus, AO has no preordained token alloca-
tions for any type of network participants. Instead, every
token is distributed proportionately to the value of assets
introduced into the system, with all movements generating
demand for economically secured message passing. These
mechanisms are described in detail in Section 7.

With the introduction of the AO token, an economic
framework emerges from which any number of downstream
security mechanisms can be constructed. These security
mechanics reside in their own AO processes, which users can
deposit their AO tokens into in order to participate. Rather
than offering a single security mechanic that is globally ap-
plied to all users, choice is instead granted to both staked
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service operators and clients to find a mutually acceptable
means of interaction. As a result, a market is created in
which varied security mechanisms compete for acceptance,
while a unified token offers a mutually admissible liquid
unit of economic value to underpin them.

The versatility of this security model will allow for the
possibility to leverage new technologies, such as ZK proofs,
to validate the integrity of messages within the network
without the need of the core AO protocol to undergo any
changes. However, economic security will continue to be es-
sential for providing message ordering and data availability.
Only significant breakthroughs in distributed and crypto-
graphic systems, which are not anticipated in the near fu-
ture, could jeopardize the integrity of this economic model.

In summary, when considering the totality of all of its
components, AO’s technical and security mechanics offer a
radically novel techno-capital construction. The network
provides its users:

1. A trustless computing environment that supports an
arbitrarily sized workload;

2. Efficient markets for the provision of each of the ser-
vices inside that environment;

3. Customizable, user-defined security mechanisms that
allow many varied workloads with differing require-
ments to exist in parallel and interoperate with one
another;

4. A novel, and more coherent token economic model for a
network that does not experience block-space scarcity.

In the following section, we set to formalize the general
risk model for AO processes, which will allow us to ana-
lyze how different AO (sub-)staking security modules ad-
dress specific protocol needs. The two main modules that
dissipate these risks are ’AO-Sec Origin’ and ’SIV’ – a sub-
staking process of AO-Sec which offers a simple and fast
AO attestation consensus protocol.

5.2 Formal Security Model of the AO
Computer

To develop a coherent model of threat vectors in the AO
network, we need to define its core components: processes,
messages, and attestors. With this foundation, we can then
examine the key roles in the protocol, their behaviors, and
the specific threat models associated with each.

5.2.1 Processes

Let Pi represent the ith process.
Define Pi = (Logi, Initi, Envi), where:

Logi is the ordered sequence of all messages for Pi.

Initi is the initialization data for Pi.

Schedi is the scheduler for Pi.

Envi is the computing environment for Pi.

Notably, as the ao data protocol focuses on providing
a universal format for decentralized and verifiable compu-
tation, it does not enforce a specific virtual machine, nor
any associated parameters. Subsequently, when a devel-
oper creates a new process on ao, they can specify all of
the parameters necessary for units in the system to deter-
ministically execute it. These parameters are added as tags
on the spawning data item and may include (but are not
limited to):

• The maximum amount of memory that the process
should be able to use.

• The maximum number of operations (optionally
weighted, according to the specification of the virtual
machine) that the process may consume while evalu-
ating a single message.

• Any extensions to the virtual machine that the pro-
cess requires (access to a virtualized local file system,
hardware-optimized encryption instructions, etc.), as
defined by the virtual machine specification.

The state of Pi at a given time step, S(Pi), is determined
by:

S(Pi) = F (Logi, Envi)

where F is a function, defined by Envi, computing the state
based on the message log.

The outbox of new messages to be sent to related pro-
cesses as a result of a message is described as follows:

Outboxm = F (Logi, Envi,m)

where m refers to the originating message.

5.2.2 Messages

Let Mij represent the j
th message in Pi. Mij is represented

as an ANS-104 compliant data item. The delivery status
D(Mij) can be represented as:

D(Mij) =

{
1 if delivered

0 else

The AO data protocol employs at-most-once delivery se-
mantics, as detailed in [22], atop which additional guar-
antees are provided by the maintenance of message logs
on Arweave through its data persistence protocol. These
guarantees ensure that undelivered messages that result
from Pi may always been delivered later by re-computing
Outbox(Pi) from its message log on Arweave.

5.2.3 Attestations

Let SU denote the stake for a unit performing attestations
U , representing the value of locked tokens committed by the
unit to ensure economic security for action it is involved in.
The stake is defined as:
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SU =tokens committed by S in a staking process.

SP =the active staking process of the attestor.

Once staked, the tokens SU for any A may be subject
to slashing as a result of malicious behavior, in accordance
with the ruleset of its active (sub-)staking process (SP ).

5.3 Scheduler Units

Upon receiving a message m, a SU, denoted as SUPi
for

process Pi, performs the following operations:

1. Assignment: SUPi
assigns m a unique incremental

nonce, n, reflecting the order of receipt relative to other
messages within the same process. This assignment is
formalized as:

a(m) = (m,n, σ(SUPi
,m, n))

where σ(SUPi ,m, n) denotes the cryptographic signa-
ture of SUPi

over the message m and its nonce n.

2. Persistence: The signed assignment, along with the
message, is persisted onto the Arweave data layer, en-
suring its availability and integrity within the network.

5.3.1 Mechanics

Secure staking processes should SUPi , denoted as SSUPi
,

should be subject to slashing by an acceptable and active
staking process SP under the following conditions:

1. If SUPi fails to perform the assignment for m or mali-
ciously drops m, SSUPi

will be slashed to penalize the
non-compliance.

¬a(m) ⇒ Slash(SSUPi
)

2. If SUPi performs the assignment for m but fails to
persist the signed assignment and message onto the
Arweave data layer, resulting in a ‘gap’ in the log for
Pi, SSUPi

will also be slashed.

¬Persist(a(m)) ∨ ¬Persist(m) ⇒ Slash(SSUPi
)

3. Assigning a slot more than once with the same nonce
to different messages:

∃m1,m2;m1 ̸= m2∧A(m1)n = A(m2)n ⇒ Slash(SSUPi
)

5.4 Compute Units

Compute units execute the virtual machine (defined by
Envi) function λ for Pi on given a message:

λ(Pi,mj) = ⟨ΦPi , Outboxj , Attestj⟩

where ΦPi
is the new process state, Outboxj is the set of

any resulting outbound messages, and Attestj is a signed
attestation of the computation.

5.4.1 Mechanics

Should Attestj be determined to be incorrect by other par-
ties in the staking process, they should have the author-
ity to commence a slashing operation against SCU . Subse-
quently, MUs can employ the results of λ(Pi,mj) from a
CU, with economic guarantees bounded by SCU , ensuring
a secure and reliable framework.

5.5 Messenger Units

Messenger Units (MUs) act on behalf of the user in order
to move messages between processes in the system. By per-
forming this task, called pushing, MUs are able to orches-
trate any number of processes in order to perform specific
tasks for users.

5.5.1 Mechanics

1. MUm receives a message mi from a client or user.

2. The messagemi is then forwarded to the scheduler SUk

for assignment and publication, ensuring it receives a
unique slot in the process’s ordering.

3. MUm requests the outbox of a chosen CUl for any
new messages that have been generated as a result of
processing λ(Pi,mi).

4. If there are new messages in the outboxes, MUm takes
each new message, signs it, and forwards it to the ap-
propriate SUk, recursively continuing the process.

The recursion ends when there are no more new messages
given by CUl for all prior messages, signifying the end of
the processing cycle for the user’s interaction.

Push(MUm,M) =

{
∅ if M = ∅
Process(M,MUm) otherwise

where;

Process(M,MU) =
{SUk(σ(MU,m)) | m ∈ M}
∪ {Push(MU,CUl(m)out) | m ∈ M}

σ(MU,m) returns m signed with MU’s private key.

5.5.2 Message Acceptance

Messages are propagated via Push(MUm,m), either di-
rectly by the Messenger Unit MUm or by external initia-
tors. Upon receipt, processes evaluate these messages and
their signatures to decide on subsequent actions: either to
engage (α), ignore (ι), or request re-transmission with dif-
ferent security parameters (ρ). These may include using an
alternate security subprotocol (a different staking process),
or a different stake quantity or time. This protocol em-
powers processes within the AO network to delineate their
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security requirements for message interaction, symbolically
represented as:

Decision(Pi,m, σ) =


α, if security criteria are met,

ι, if it is to be disregarded,

ρ, if re-transmission is required.

In the event that MUm is discovered signing an invalid
message, stakers within the given staking process should
enforce a slashing operation against the stake of MUm, de-
noted as SMUm

.

¬MUm ⇒ Slash(SMUm
)

Moreover, should the invalidity stem from a Compute
Unit’s (CU ) attested result, λ(Pi,mj), MUm may assert
a claim against the CU’s stake, SCU , contingent on the
staking process’s framework. This relationship is defined
as:

¬λ(Pi,mj) ⇒ Transfer(SCU , SMUm
)

5.5.3 Stake Aggregation

To securely relay messages across the network, MUs may
need to aggregate attestations from multiple CUs to meet
the security requirements of the processes. This aggrega-
tion ensures that the combined stake is sufficient to up-
hold the integrity and trustworthiness of the message being
transmitted.

The process of stake aggregation operates as follows:

1. A MU identifies the security requirements specified by
the process for a given message.

2. The MU then collects attestations from available CUs,
each contributing a portion of the required stake.

3. These attestations are aggregated into a single stake
bundle, effectively pooling the security guarantees
from multiple sources.

4. The aggregated bundle is then relayed through the
Scheduling Unit (SU) to the process (operated by a
CU).

This bundled approach to stake aggregation allows for a
streamlined and efficient transmission of secured messages,
ensuring that each message meets the predefined security
criteria before it is processed by the recipient CU. More-
over, by utilizing a composite of attestations, the system
enhances the resilience and fault tolerance of message han-
dling, distributing the risk among multiple CUs and thereby
mitigating potential points of failure.

Aggregate(MUm,m) =
⋃

CUi∈C

σ(CUi,m)

At the discretion of the CU or the process itself, attesta-
tions from specific CUs may be required.

5.6 The AO-Sec Origin Process

We now examine the function and design of the ‘AO-Sec
Origin’ process, which serves as the backbone of security
on the AO network. This foundational process underpins
the economic security mechanisms for all subordinate mech-
anisms within the network, ensuring robust network in-
tegrity.

The AO-Sec Origin process acts as the primary custo-
dian and issuer of the network’s staking tokens, holding
ownership records and user-defined properties regarding all
stakable units. It also provides the back-stop security func-
tions for the reliable operation of the network, including
staking, slashing, and unstaking of tokens. Finally, AO-Sec
Origin facilitates the reassignment of processes in response
to failures or breaches of protocol by Scheduler Units (SUs),
such as liveness issues or double-signing.

5.6.1 Trustless Scheduling Guarantees

The Ethereum ecosystem has successfully pioneered a novel
approach to ‘sequencing’ (giving unique ordering to, and
ensuring availability of) transactions in decentralized net-
works [1]. Rather than focusing on providing traditional
Byzantine Fault-Tolerance (BFT) to every transaction in
normal operating conditions (which incurs significant costs
– both in performance and economic burden), equivalent
safety can be provided by the ability to trustlessly fallback
to traditional decentralized consensus only when necessary.
In this paradigm, users gain the full benefits of decentral-
ization (liveness, censorship resistance, and trustlessness),
without the necessity of bearing the cost of multi-party
consensus upon sequencing. Concretely, the communica-
tion complexity of AO’s approach compares to traditional
blockchains as follows:

Network Best Average Worst

AO Network Ω(1) O(1) O(n log n)
Traditional Blockchain Ω(n log n) O(n log n) O(n log n)

Table 1: A comparison between the communication
complexities of message settlement on AO and traditional

networks [12].

Scheduler Units can encounter three primary types of
faults, each of which has a different resolution mechanism
in the AO-Sec Origin process. Their details are as follows:

1. Liveness: In which a processes active SU (SUp in our
formal model) is offline or non-responsive to requests
to schedule specific messages (censorship).
Resolution: At any time, any network participant
may raise a challenge on the AO-Sec Origin process
for the responsible SU to schedule any message onto
Logi for process Pi. If the SU does not respond to the
challenge within the given period (set by the process
during initialization), Pi becomes unhosted.

2. Double Assignment: A malfunctioning or malicious
SU may provide two signatures for the same ‘slot’ for
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a process (∃m1,m2;m1 ̸= m2 ∧ A(m1)n = A(m2)n),
leading to ambiguity in the ordering of messages.
Resolution: Upon acquiring evidence of a double as-
signment of slots (A(m1)n and A(m2)n), any partici-
pant in the network may submit both assignments to
the AO-Sec Origin process. This causes Pi to become
unhosted. Notably, (m1)n (the first mn to be submit-
ted to the process) becomes the selected message at
Logi for Pi. This essentially performs the function of
‘fork recovery’ in a traditional blockchain, restoring an
unambiguous total ordering to the process.

3. Non-Publication: Sometimes, due to negligence or
malfeasance, the entity scheduling a process might fail
to publish a message for which it has provided an as-
signment (A(m)n). If this happens, a Computation
Unit (CU) attempting to calculate the state S(Pi) for
a process, as Logi would be incomplete.
Resolution: Any participant in the network can raise
a challenge, requiring that the Scheduling Unit SUP

(or any other interested party) publish the messagemn

directly to the AO-Sec Origin process within a speci-
fied timeout window. If the challenge fails, the process
Pi becomes unhosted at Logn−1. Unlike other AO-Sec
Origin operations, non-publication challenges may in-
volve the forced publication of large messages, which
can be costly. To mitigate this burden, processes have
the following two options at their disposal during ini-
tialization:

(a) Specifying additional non-publication chal-
lenge processes: During launch of a new com-
putation, users may choose to specify an addi-
tional process that must be monitored by its
corresponding SU in order to respond to non-
publication challenges. These processes imple-
ment the same interface as the AO-Sec Origin
process, operating as sub-staking modules on the
network. In the event of SU faults on the ad-
ditional non-publication challenge process, they
too can fallback to the AO-Sec Origin process,
due to the hierarchical security structure that it
provides. SU operators may choose at their dis-
cretion to charge greater fees to host a process
that has additional non-publication challenge ad-
dresses specified, as they must observe the process
to check for challenges over time.

(b) Allowing stakers to vote on data availabil-
ity: Some processes may choose to allow staked
members of the AO-Sec Origin process to vote on
whether the data is available, rather than forc-
ing publication of the data itself. If the process
specifies this option, the cost of forced-publication
may be saved (which may be reflected in a lower
hosting fee by SUs), but creates exposure for the
process to the majority of the stakers’ opinions.

Notably, in every resolution scenario aside 3B (an op-
tional, secondary approach) the process is not exposed to

issues of honest or dishonest majorities in the AO-Sec Ori-
gin staking committee. The result of this, is that processes
that do not choose to be exposed to optional voting me-
chanics (typical in modern PoS networks) have mechanistic
trustless operation guarantees that do not require them to
have faith in the integrity of the node operators over time.

In order for the AO-Sec Origin process to confer the
trustless guarantees listed above, it itself must be hosted on
a more traditional blockchain. Because AO’s data protocol
allows free choice of the type of SU that a process resides
on, AO-Sec Origin is able to use Arweave’s Byzantine Fault
Tolerant (BFT) consensus algorithm [7] as its host. This
mechanism functions in the same way as SmartWeave and
other, first generation smart contracting techniques on Ar-
weave [25]. By operating in this way, liveness of the AO-Sec
Origin process is ensured, thereby extending these proper-
ties to all processes within the AO network. These proper-
ties even extend to any other sub-staking security processes
inside AO: In the event that their SU stops hosting them,
these processes can fallback on Arweave’s robust BFT con-
sensus. This system allows for rapid transaction process-
ing by these sub-staking processes under normal conditions,
with the security of traditional BFT mechanisms available
in emergency situations.

5.6.2 Markets for re-hosting processes

In the event of challenge failures in AO-Sec Origin, pro-
cesses may be moved to an unhosted state. In order to
trustlessly resolve these scenarios, any willing SU may send
an unscheduled (unreplicated, or assigned) ‘dry-run’ mes-
sage to the process in order to gain its assent to become
the host for the process. In an unhosted state, the process
is unable to send messages to other processes or change its
state (as the dry-run input message to the process itself has
not been assigned a slot), but it is able to respond to the
caller in expressive ways. It may:

1. Accept the SU’s offer to become its host (accepting the
fees that the SU quotes for its operation).

2. Ask for further information from the SU. In this sce-
nario, the SU is able to retrieve this information and
dry-run the interaction with the process again. Despite
the lack of ability to modify its own state during its
unhosted phase, through this mechanism the process
is still able to interact with the full AO environment
in order to decide whether to accept the offer.

3. Reject the offer without further request.

Once a SU has produced a message that leads to an affir-
mative response from the process, they may submit their m
to AO-Sec Origin in order to become the valid host (SUp)
for the process. Through this mechanism processes are able
to ‘negotiate’ with would-be hosts and gain the necessary
information needed to decide the most appropriate new SU,
avoiding any need for ‘forced-assignment’ by votes.
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5.6.3 Sub-Staking and Sub-Ledger Processes

The parallel design of the AO network allows for the im-
plementation of further sub-staking and sub-ledger mech-
anisms. These ’child’ processes enable the deployment of
AO tokens across a wide variety of security frameworks and
payment systems:

Sub-Staking Processes: These processes offer cus-
tomizable security configurations to cover the spectrum of
diverse needs of network participants. By enabling bespoke
security, the network grants participants with high adapt-
ability and robust protection for their processes, ensuring
close alignment with their specific requirements.

Sub-Ledgers: Sub-ledgers are processes that enable the
parallel execution of payments while holding a token bal-
ance in the parent process. They are versatile, capable of
extending beyond mere token storage to include a range
of functionalities that enhance transaction processing effi-
ciency. As delineated in the AO Token Specification, sub-
ledgers facilitate the seamless transfer of tokens between a
parent process and its child processes, provided these ad-
here to the established token interface standards [23]. Trust
in the originating module of a sub-ledger allows for users to
be represented by the process with the parent token without
direct intervention, thereby circumventing potential bottle-
necks in the primary process. Additionally, if the module
(its compiled code) managing a sub-ledger is considered
trustworthy, the balances maintained across these processes
may be regarded as fungible. Tokens received from one sub-
ledger of a parent (in this case, the AO-Sec Origin process)
may be deemed indistinguishable from those received from
another. This architecture permits an indefinite expansion
of parallel processes, which in turn is capable of supporting
an indeterminate volume of simultaneous transactions.

Through this structure, the security properties of the
AO-Sec Origin process are transitively applied to custom-
built security mechanisms downstream while enabling pay-
ments in the network’s native token at arbitrary throughput
rates.

5.7 Exemplar Sub-staking Process: SIV

The SIV sub-protocol enhances the foundational security
features of AO’s staked message transfer system by intro-
ducing an additional layer of Sybil-resistance, ensuring the
possibility to stake in single-assignment mode, and bol-
stering data availability guarantees. Particularly, SIV in-
tegrates a lightweight, low-latency consensus mechanism
through result attestations, tailored for deployment in spe-
cific scenarios within the AO network as per requests by
either a process or a user. These scenarios include:

1. Consensus among Sybil-resistant staked parties on
messages resulting from network computations.

2. Enhanced assurances against the rehypothecation or
’re-staking’ of security collateral within the fraud de-
tection time frame specified by a message recipient.

Figure 4: Utilizing the SIV sub-staking process
significantly reduces the probability of deceptive actions
by an attacker with each additional attestor, while the
costs for clients increase linearly with more stake-time

access.

3. Improved guarantees on the single-assignment of slots
for processes.

The operational framework of SIV includes a determinis-
tic ordered set of attestors assigned to audit other stakers’
activities. Clients requiring staked operations can mandate
the inclusion of SIV, specifying the necessary number of
attestors’ signatures for result validation. This flexible at-
testation requirement allows clients to effectively balance
their needs for security, cost, and latency.

SIV’s consensus mechanism is notably streamlined, al-
lowing for users to choose between complete consensus on
results when needed, or otherwise operate with partial con-
sensus to increase efficiency. In other words, clients can
define the exact number of participants needed for a given
action, thereby controlling the cost and latency impacts of
consensus on outputs. This strategic choice empowers users
to achieve complete consensus on results, while normally
operating with partial consensus which remains computa-
tionally efficient at O(1) complexity, contrasting with the
O(n) complexity typical of full blockchain networks.

SIV primarily enhances security by providing Sybil-
resistant attestations. These complement AO’s economic
safeguards, such as the over-collateralization of messages
based on their potential economic impact. By achiev-
ing consensus on messages and actions through stochas-
tically validated attestations from a dynamically sized set
of attestors, the likelihood of a staker deceiving a client
decreases exponentially with each additional attestor in-
volved, as illustrated in Figure 4.

The probability that all attestors are Sybils controlled by
an attacker is mathematically represented as:

P (s, n) =
( s

100

)n

where P denotes the probability of all attestors being Sybil,
s represents the stake percentage controlled by the attacker,
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and n indicates the number of attestors requested by the
client.

The operational sequence of a SIV sub-staking process is
detailed as follows:

1. Any party can trustlessly initiate a new process with
the SIV module by specifying operational parameters
such as memory and instruction limits, supported VM
environments, minimum stake time periods, and fraud
penalties.

2. Post-initialization, AO service operators meeting the
SIV criteria can partake by aligning their tokens with
the SIV instance via the AO-Sec Origin process.

3. With the closure of each epoch, the process entropy
is renewed, integrating new stakers and reshuffling at-
testor sequences to ensure comprehensive coverage of
all active stakers.

4. Stakers aggregate necessary attestations to fulfill client
requests, optimizing response times by paralleling at-
testor responses.

5. Clients validate these attestations against the current
attestor set, ensuring all responses are duly signed and
relevant.

6. Stakers can issue a termination notice at any time, al-
lowing them to withdraw from attestation obligations
and transfer their duties to the next staker in the se-
quence.

5.7.1 Ensuring Attestor Liveness

In order to address any unresponsive or non-compliant au-
ditors, SIV incorporates a mechanism to automatically re-
move them from the committee after a preset duration.
Should an auditor fail to respond to a staker’s challenge
within a preset duration, they are automatically removed
from the committee. This ensures continued responsiveness
and reliability within the network. However, to prevent po-
tential abuse of this system, stakers initiating a challenge
must pay a fee. This fee, calculated as a stake-weighted
average of all stakers’ proposed rates, is burnt to regulate
the token supply and align staker incentives towards main-
taining a robust, fair-priced attestation mechanism.

6 Economic Model

The typical economic model of blockchain networks like Bit-
coin, Ethereum, and Solana, revolves around the concept
of buying access to scarce block space, with security being
subsidized as a byproduct. Users pay transaction fees to in-
centivize miners or validators to include their transactions
in the blockchain. However, this model inherently depends
on the scarcity of block space to drive fee revenue, which
in turn funds network security.

In the context of Bitcoin’s security architecture, which
is fundamentally underpinned by block rewards and trans-
action fees, consider a hypothetical scenario wherein block

rewards are eliminated and transaction throughput is as-
sumed to be infinitely scalable. Under these conditions,
the scarcity of block space would effectively be nullified,
leading to minimal transaction fees. Consequently, the eco-
nomic incentives for network participants to maintain secu-
rity would be significantly reduced, thereby increasing the
vulnerability of transactions to potential security threats.

Solana exemplifies this theoretical model in practice, il-
lustrating that as network scalability increases, fee revenues
correspondingly diminish. In the absence of substantial
transaction fees, the principal source of security funding
is derived from block rewards. These rewards essentially
function as a tax on token holders, manifesting either as op-
erational overhead for those electing to stake their tokens
personally, or as a gradual dilution of their proportional
ownership within the network for those who abstain from
staking.

Earlier, we presented the need for an AO token as a uni-
fied representation of economic value to support security
mechanisms within the network. Below, we discuss how
the market for security emerges in AO, how participants
can benefit from dynamic stake exclusivity and how this
market reaches equilibrium by calibrating its parameters.

6.1 Establishing a Market for Security

In contrast to the examples above, AO introduces a novel
approach where users purchase the specific level of secu-
rity required for each message they send. This model al-
lows users to ”insure” their messages to the level of security
deemed necessary by their counterparts, facilitating a tai-
lored and efficient allocation of security resources. This
direct relationship between message security and user ex-
penditure obviates the need for subsidizing security through
block rewards or collective fee-bargaining mechanisms.

Furthermore, AO’s model creates a competitive market
for access to the network’s stake that underpins security.
Since security is purchased on a per-message basis, a dy-
namic marketplace for staking emerges, where the price of
security is determined by supply and demand rather than
fixed network rules. This market-driven approach promotes
efficient pricing and allocation of security resources, provid-
ing robust security tailored to the actual needs of users and
avoiding the one-size-fits-all model of traditional network
mechanics.

This economic model not only enhances efficiency but
also aligns the incentives of all network participants by di-
rectly correlating the cost of security with its consumption.
This alignment potentially reduces the overall operational
costs of the network.

6.2 Stake-Exclusivity Periods

An integral feature of AO’s security framework is the im-
plementation of ’stake-exclusivity’ periods. This security
mechanism enables the recipient of a message to designate
a specific time window during which the stake used to se-
cure the message is exclusively reserved—preventing it from
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being ‘double spent’—for that particular message’s trans-
mission. Throughout this exclusivity period, the staked
collateral is locked, rendering it unavailable for other uses,
thereby ensuring its availability for potential slashing if dis-
crepancies in the message are later identified.

This feature significantly enhances the trustworthiness
of the transmission process by allowing recipients to set
a ”stake-exclusivity” period that matches the security re-
quirements of their specific transactions. Stakeholders can
customize security measures based on the perceived risk
and value of the message. For critical or valuable messages,
extended exclusivity periods can be set, providing sufficient
time for necessary challenges and verification by concerned
parties. This arrangement not only bolsters security but
also strengthens the integrity of the message verification
process.

6.3 Time-Value of Stake

In the AO model, each message that is passed requires the
user to compensate for the ’time value of stake’ — the op-
portunity cost of locking (single-assignment) of capital for
a specific duration to secure a message. This mechanism
plays a critical role in determining the pricing dynamics
within the AO system.

6.3.1 Economically Rational Security Pricing

Consider a user who wishes to insure a message worth $1
million with a stake-exclusivity period of 15 minutes. The
cost of insuring this message—paying for the time value of
the stake—can be modeled as a function of the expected
annual return rate desired by the stakers. For instance, if
stakers expect a 10% annual return on their engaged cap-
ital, the cost of securing this message can be derived from
the pro-rata share of this expected return over the exclu-
sivity period.

The formula for calculating the price, P , of securing a
message for a period E in a given unit (minutes, seconds,
etc.), given the total insured amount I and the annual ex-
pected return rate r (expressed as a decimal), is defined as
follows:

P = I ·
(

R

Tannual

)
· E

where:

I is the total collateral provided for the insurance,

R is the annual expected return rate of the staker,

E is the stake-exclusivity period.

For a message with collateral of $1 million with a 15-minute
exclusivity period and a 8% expected return rate:

C = $1, 000, 000 ·
(

0.08

525, 600

)
· 15 = $2.28.

This calculation indicates that the time-value price for
a 15-minute exclusivity on a $1 million stake, assuming an

8% annual return, is $2.28. Message recipients are em-
powered to select their preferred over-collateralization ra-
tio and stake-exclusivity duration, effectively balancing risk
against the cost of service access. This flexibility is a tes-
tament to the network’s underlying economic principle: of-
fering a customizable environment where users and services
can adjust parameters—such as stake amounts and time-
frames—to meet the demands of their specific operations.

6.3.2 Market Dynamics and Equilibrium

The equilibrium in the AO staked messaging market is in-
fluenced by the interaction between the demand for security
(driven by the value and stake-exclusivity time of messages)
and the supply of stake capital (influenced by staker re-
turn expectations). The demand for security stake can be
expressed as a function of the quantity of transactions Q
and their average value V̄ , adjusted by the average stake-
exclusivity period Ē:

D = Q · V̄ · Ē

Tannual

where Tannual is the total number of the units in a year
for which stake exclusivity is being considered (for exam-
ple, 525,600 for minutes). This formula reflects the total
demand for stake capital in terms of the average economic
value that is active in message security at any given time.

The supply of economic utility from staked capital S, is
modeled as the product of the total stake available K and
the expected return rate R:

S = K ·R

This equation reflects the total economic value that the
staked capital is expected to generate over a year. Here,
K represents the volume of AO tokens actively committed
to securing the network, and R is the annualized expected
return on these staked tokens.

Equilibrium in the staking market D = S is achieved
when the demand for security, D, matches this supply of
economic utility, S:

Q · V̄ · Ē

Tannual
= K ·R

Solving for the required return rate R, which balances
the supply and demand for staking utility, yields:

R =
Q · V̄ · Ē
K · Tannual

This formula calculates the equilibrium return rate R. If
this calculated R is higher than the current market rate of
return, it indicates a deficiency in staking capital relative
to the demand for security. Consequently, more capital will
flow into staking, increasing K until the new equilibrium
is reached. Conversely, if R is lower than the market rate,
it suggests an oversupply of staked capital, leading some
stakers to withdraw their funds, thereby reducing K until
equilibrium is restored.

13



6.3.3 Peer-to-Peer Market Dynamics

The AO network’s decentralized, peer-to-peer market struc-
ture inherently allows nodes to independently set their own
fees for staked message passing services, without enforcing
global pricing. This flexibility lets them dynamically adjust
to market demand and supply changes, fostering competi-
tion and boosting responsiveness. Nodes that offer com-
petitive rates and terms naturally attract more users, op-
timizing their returns and leading to an efficient market
equilibrium.

This mechanism promotes market efficiency while lay-
ing the foundation for well-defined token valuation met-
rics. The process of analyzing the volume and value of
secured messages, along with competitive return rates, es-
tablishes a comprehensive framework for real-time token
valuation, which is dependent on the network’s perceived
security, utility, and demand.

7 AO Token Minting

Once an efficient market for security on the AO network has
been defined, it is essential that the AO monetary policy
guarantees that no party has an unfair economic advantage
without having vested interests. To achieve this, we now
set to outline a minting process that distributes new tokens
only to network participants who have a direct economic
interest in leveraging the token for its intended purpose of
securing the AO network.

7.1 AO supply growth over time

AO will have a total supply of 21 million tokens. New
tokens are minted every 5 minutes, accumulating to a
monthly rate of 1.425% of the remaining supply. As a re-
sult, the circulating supply follows a log curve, with the
amount of minted tokens effectively undergoing a halving
event every 4 years. In contrast to the Bitcoin network,
where the coin reward per block is abruptly cut in half ev-
ery 4 years, the AO network will always disperse tokens
at the same rate, so that the number of tokens that are
minted every 5 minutes will diminish continuously as the
circulating supply grows over time.

In the absence of pre-mined tokens or other discretionary
supply shocks, the circulating supply of AO tokens can be
predicted with full certainty at any point in time since gen-
esis (see figure 5).

7.2 Distribution of AO supply

Arweave serves as the structural foundation for the AO net-
work. It not only enables its security mechanisms, but its
native token AR allows for messages on AO to be stored
and subsequently validated in a truly decentralized man-
ner. For this reason, AR addresses holding a positive bal-
ance will be eligible to receive AO for as long as tokens are
minted. This minting mechanism is designed to create a
natural alignment of interests of AR token holders with the

Figure 5: Growth of the AO token supply over time. AO’s
model follows Bitcoin’s, modified to generate a smooth
emission curve – with ‘halvings’ representing a half-life,
rather than an abrupt change to the emissions per time

period.

AO network that should foster the mutual success of both
networks in the long term.

The minting of AO tokens begun with the launch of the
AO testnet on February 27th 2024. After a period of 4
months, users looking to mint AO with assets other than
Arweave´s native token AR have the option to deposit and
bridge qualified assets into the network. From the moment
this functionality is enabled, two thirds of the supply of
newly minted AO tokens is distributed to users that hold
bridged assets in the AO network. AR holders will continue
to receive one third of the ongoing supply. In the case where
no qualified assets are bridged into AO, AR holders will
continue to receive the totality of new tokens.

This monetary policy heavily rewards those that bring
assets into the AO network. Parties that bridge qualified
assets will consequentially be entitled to a share of the AO
token supply for as long as their assets remain in the net-
work.

Thus, we can express the number of AO tokens minted
per wallet UR as

UR =

{
1
3 · TR · URAR + 2

3 · TR · URB if TB > 0

TR · TRAR if TB = 0

where:

TR is the total number of AO tokens minted
per time period,
TB is the total number of bridged assets
per time period,
URAR is the per wallet share rate for
holders of AR tokens, and
URB is the per wallet share rate for
holders of qualified bridged assets.

14



With this formula we can now calculate the appropri-
ate reward rates for AR token holders URAR as well as
addresses that own bridged assets URB .

7.2.1 Reward rate per wallet for holders of AR
tokens

The amount of AO tokens awarded for holding AR is de-
termined by the ratio of the AR an address holds compared
to the total circulating supply of AR.

Then, the per wallet share rate for holders of AR tokens
URAR can be expressed as

URAR =
UAR∑n

i=1 UARi

where UAR is the number of AR tokens in the user’s
wallet.

7.2.2 Reward Rate per wallet for bridged assets

The amount of AO tokens awarded for depositing qualified
bridged assets into the AO network is determined by the ra-
tio of the volume of the bridged asset times its annual stak-
ing yield compared to the the total volume of assets that
have been bridged to the AO network. As a result, bridg-
ing qualified assets the carry higher native staking yield, all
else equal, will lead to a greater wallet share rate for newly
minted AO tokens.

The per wallet share rate for any holder of qualified
bridged assets URB can be expressed as

URB =
UB ·NSYB∑n

i=1 UBi
·NSYBi

where:

UB is the volume of qualified
bridged asset B per wallet, and
NSYB is the native annual staking
yield per qualified bridged asset B.

7.2.3 Criteria for Qualified Assets and Bridges

The main criteria that bridged assets must fulfill in order
to qualify for payments of newly minted AO tokens are:

1. The asset must be mature, with a diverse and liquid
market.

2. The asset type must be yield bearing with robust,
battle-tested liquid staking tokens such as stETH.

For this criteria to be fully met, assets must enter AO via
bridges that offer the functionality to split the underlying
asset from its native yield in order to fund the growth of
the network.

Bridges to the AO network consist of two smart con-
tracts, one on the network the assets are bridged from, the

native chain, and another one on the AO network itself.
The smart contract on the AO network generates derivative
tokens that represent the bridged native assets. The deriva-
tive tokens are freely transferable on the AO network. Once
the yield bearing asset has been deposited into a bridge, the
owner is given a representation of that token that is com-
patible with the AO network token standard, e.g bridged
stETH is represented in AO aoETH. Users can then freely
move and stake their tokens across the network, while pas-
sively minting AO. Assets can be withdrawn from AO by
their owners at any time, but resign from then on to the
eligibility to mint AO for the portion of the assets that are
bridged back to its network of origin.

7.3 Ecosystem Development

The AO minting and distribution design presented above
encourages any interested party to move liquidity into the
AO network in order to strongly incentivize the growth
of its economy. As a direct result of this model, unlike
most modern blockchain networks there is no central party
with control over a treasury of AO tokens in order to drive
ecosystem development and adoption. Since the supply of
AO tokens cannot be altered or controlled, AO token hold-
ers cannot be directly or indirectly taxed for future en-
hancements to the network or discretionary initiatives.

In order to support the further development of the AO
ecosystem, the network offers two mechanisms of funding
for its growth:

1. A Permissionless Ecosystem Funding, and

2. Permaweb Ecosystem Development Guild (PEDG)

The funding rate of these ecosystem growth mechanisms
will decrease in accordance with the rate of decay that the
AO token mint curve is subject to. As AO token rewards
diminish over time, so too will the yield extracted from
bridged assets decline in a proportionate fashion.

7.3.1 Permissionless Ecosystem Funding

The Permissionless Ecosystem Funding offers an opportu-
nity for developers to fund their applications and establish
thriving profit sharing communities with their users and
liquidity providers. Users that bridge their assets into AO
will have the liberty to interact with a wide variety of ap-
plications. By doing so, they not only provide liquidity to
these apps, but also temporarily give the right for their na-
tive AO yield to the process – providing it with a stream
of funding.

Developers that are able to attract capital for their ap-
plications will automatically have the mandate to decide
the best use of this long-term source of revenue. Builders
may choose to use all of these funds for their application, or
share these AO tokens amongst their users. They can even
utilize this flow of new AO tokens to fund other relevant ap-
plications and services, if they prefer. Liquidity providers,
on the other hand, have the freedom to decide the apps
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and teams they wish to fund based on their personal pref-
erences. In this way, a permissionless. meritocratic, and
transparent revenue stream is provided to developers of new
applications, freeing them from the need to request grants
or investment funding.

7.3.2 Permaweb Ecosystem Development Guild
(PEDG)

The PEDG is an alliance of dedicated AO ecosystem orga-
nizations and builders that develop, grow, and maintain the
infrastructure necessary for the AO network. The PEDG
is funded by the native yield generated by bridged assets,
while they are in use on the AO network. Rather than fund-
ing a single core team, this yield is distributed amongst a
diverse set of teams and builders contractually committed
to the growth of AO. At the time of AO’s token launch,
PEDG is composed of 5 ecosystem partners that collabo-
rated on the launch of the AO network, with more to be
added as the protocol matures and grows.

8 Conclusion

The AO protocol presents a significantly differentiated de-
sign in the realm of decentralized computing by implement-
ing a model based on the actor-oriented paradigm. This
approach enables the AO network to operate without the
traditional constraints faced by similar systems, primar-
ily through its modular architecture and a flexible security
model. These features enable the network to adapt to the
diverse needs of its users, creating a more versatile and ef-
ficient environment for decentralized applications.

Central to AO’s design is its capacity to support an un-
limited number of parallel processes. This capability sig-
nificantly boosts the network’s scalability, also allowing for
the coexistence of various configurations for bespoke oper-
ational requirements. This capability significantly boosts
the network’s scalability, also allowing for the coexistence
of various configurations for bespoke operational require-
ments.

Moreover, AO’s economic model diverges from tradi-
tional blockchain architectures by eliminating reliance on
block rewards for network security. Instead, it introduces a
market-driven security mechanism where the safety level of
processes is directly correlated with users’ needs and their
corresponding willingness to pay for insurance. This shift
aims to optimize resource utilization and align incentives
across the network, fostering economic efficiency and rein-
forcing long-term system resilience.

To conclude, the AO protocol proposes a new perspec-
tive on decentralized computing; one that prioritizes system
malleability, custom-made user security, and economic effi-
ciency. These design choices address not only common limi-
tations of current iterations of widespread systems, but also
expand the spectrum of applications and use cases that are
possible with a combined, trustless computer that is shared
by all that wish to participate in the network.
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